Primate area V1: largest response gain for receptive fields in the straight-ahead direction.

نویسندگان

  • Andrzej W Przybyszewski
  • Igor Kagan
  • D Max Snodderly
چکیده

Although neuronal responses in behaving monkeys are typically studied while the monkey fixates straight ahead, it is known that eye position modulates responses of visual neurons. The modulation has been found to enhance neuronal responses when the receptive field is placed in the straight-ahead position for neurons receiving input from the peripheral but not the central retina. We studied the effect of eye position on the responses of V1 complex cells receiving input from the central retina (1.1-5.7° eccentricity) while minimizing the effect of fixational eye movements. Contrast response functions were obtained separately with drifting light and dark bars. Data were fit with the Naka-Rushton equation: r(c)=Rmax×c/(c+c50)+s, where r(c) is mean spike rate at contrast c, Rmax is the maximum response, c50 is the contrast that elicits half of Rmax, and s is the spontaneous activity. Contrast sensitivity as measured by c50 was not affected by eye position. For dark bars, there was a statistically significant decline in the normalized Rmax with increasing deviation from straight ahead. Data for bright bars showed a similar trend with a less rapid decline. Our results indicate that neurons representing the central retina show a bias for the straight-ahead position resulting from modulation of the response gain without an accompanying modulation of contrast sensitivity. The modulation is especially obvious for dark stimuli, which might be useful for directing attention to hazardous situations such as dark holes or shadows concealing important objects (Supplement 1: Video Abstract, Supplemental digital content 1, http://links.lww.com/WNR/A295).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privileged Processing of the Straight-Ahead Direction in Primate Area V1

Gaze direction modulates the gain of neurons in most of the visual cortex, including the primary visual (V1) area. These gain modulations are thought to support a mechanism involved in the spatial localization of objects. In the present study, we show that part of them may reflect an additional function: enhancing the visual processing of the objects located straight ahead. Using single- and mu...

متن کامل

Neural Mechanisms of Visual Motion Perception in Primates

A large extent of the posterior cortex of the primate found that are direction selective (Figure 1). Direction brain is devoted to vision, and it contains two general selectivity refers to the fact that these cells respond streams that process visual information. The one stream best when a stimulus moves in a particular direction is situated more ventrally in the cortex and is important within ...

متن کامل

Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity.

One hundred and forty two neurons in V1 and V2 were quantitatively tested using a multihistogram technique in paralyzed and anesthetized macaque monkeys. V1 neurons with receptive fields within 2 degrees from the fixation point (central V1 sample) and V1 neurons with eccentric receptive fields (15-25 degrees eccentricity, peripheral V1 sample) were compared to assess changes in velocity sensiti...

متن کامل

Gain control from beyond the classical receptive field in primate primary visual cortex.

Gain control is a salient feature of information processing throughout the visual system. Heeger (1991, 1992) described a mechanism that could underpin gain control in primary visual cortex (V1). According to this model, a neuron's response is normalized by dividing its output by the sum of a population of neurons, which are selective for orientations covering a broad range. Gain control in thi...

متن کامل

Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex.

In primates, lesions of striate cortex (V1) result in scotomas in which only rudimentary visual abilities remain. These aspects of vision that survive V1 lesions have been attributed to direct thalamic pathways to extrastriate areas, including the middle temporal area (MT). However, studies in New World monkeys and humans have questioned this interpretation, suggesting that remnants of V1 are r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroreport

دوره 25 14  شماره 

صفحات  -

تاریخ انتشار 2014